4.5 Article

Facile Low-Temperature Approach to Tin-Containing ZnO Nanocrystals with Tunable Tin Concentrations Using Heterobimetallic Sn/Zn Single-Source Precursors

期刊

CHEMPLUSCHEM
卷 78, 期 1, 页码 62-69

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cplu.201200259

关键词

field-effect transistors; heterobimetallic oxides; semiconductive oxides; single-source precursors; thin films

资金

  1. Senate of Science and Education of the State of Berlin (Program Nachhaltige Chemie)

向作者/读者索取更多资源

Stannyl-substituted [(RZn)4(OR')4] cubanes with different tin-containing alkoxy groups [Ph3SnOZnMe] (1), [Ph3SnOZnEt] (2), [Me3SnOZntBu] (3), and [Ph3SnOZntBu] (4) are easily accessible by Bronsted acidbase reaction of the corresponding triorganotin hydroxides with ZnMe2, ZnEt2, and Zn(tBu)2, respectively. All new compounds 14 were characterized by various spectroscopic methods and the structures of 1 and 3 were confirmed by single-crystal X-ray diffraction analysis. The thermal degradation of the precursors 14 under dry synthetic air (20% O2, 80%N2) was studied and the final oxide materials were characterized by employing powder X-ray diffraction (PXRD) analysis, inductively coupled plasma-optical emission spectrometry (ICP-OES), transmission and scanning electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). Remarkably, compounds 1 and 2 proved to be suitable as single-source precursors (SSPs) for the efficient preparation of tin-doped ZnO nanoparticles with tunable tin concentrations as a promising system for steering and improving the optoelectronic properties of tin-doped ZnO. Using 3 as SSP furnishes tin-containing ZnO materials with good electron mobilities at relatively low processing temperatures (350 degrees C) for thin-film transistor (TFT) applications. All the thin films of tin-doped ZnO prepared by spin-coating on silicon wafers are of great homogeneity and amorphous structure, which is promising for future applications in the field of transparent conducting oxides (TCOs).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据