4.8 Article

Two Distinct Modes of ATR Activation Orchestrated by Rad17 and Nbs1

期刊

CELL REPORTS
卷 3, 期 5, 页码 1651-1662

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2013.04.018

关键词

-

资金

  1. Swedish Research Council
  2. FRSQ fellowship
  3. Japanese Ministry of Education, Culture, Sports, Science and Technology [KAKENHI 24800044, KAKENHI 23300363]
  4. NIH [GM076388]
  5. ACS [RSG-08-297]
  6. Federal Share of MGH Proton Program
  7. Grants-in-Aid for Scientific Research [23300363, 25112711, 25701005, 24800044, 24650645, 221S0001] Funding Source: KAKEN

向作者/读者索取更多资源

The ATM- and Rad3-related (ATR) kinase is a master regulator of the DNA damage response, yet how ATR is activated toward different substrates is still poorly understood. Here, we show that ATR phosphorylates Chk1 and RPA32 through distinct mechanisms at replication-associated DNA double-stranded breaks (DSBs). In contrast to the rapid phosphorylation of Chk1, RPA32 is progressively phosphorylated by ATR at Ser33 during DSB resection prior to the phosphorylation of Ser4/Ser8 by DNA-PKcs. Surprisingly, despite its reliance on ATR and TopBP1, substantial RPA32 Ser33 phosphorylation occurs in a Rad17-independent but Nbs1-dependent manner in vivo and in vitro. Importantly, the role of Nbs1 in RPA32 phosphorylation can be separated from ATM activation and DSB resection, and it is dependent upon the interaction of Nbs1 with RPA. An Nbs1 mutant that is unable to bind RPA fails to support proper recovery of collapsed replication forks, suggesting that the Nbs1-mediated mode of ATR activation is important for the repair of replication-associated DSBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据