4.6 Article

Natural Listening over Headphones in Augmented Reality Using Adaptive Filtering Techniques

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASLP.2015.2460459

关键词

Adaptive filtering; augmented reality (AR); head related transfer function (HRTF); natural listening; spatial audio

向作者/读者索取更多资源

Augmented reality (AR), which composes of virtual and real world environments, is becoming one of the major topics of research interest due to the advent of wearable devices. Today, AR is commonly used as assistive display to enhance the perception of reality in education, gaming, navigation, sports, entertainment, simulators, etc. However, most of the past works have mainly concentrated on the visual aspects of AR. Auditory events are one of the essential components in human perceptions in daily life but the augmented reality solutions have been lacking in this regard till now compared to visual aspects. Therefore, there is a need of natural listening in AR systems to give a holistic experience to the user. A new headphones configuration is presented in this work with two pairs of binaural microphones attached to headphones (one internal and one external microphone on each side). This paper focuses on enabling natural listening using open headphones employing adaptive filtering techniques to equalize the headset such that virtual sources are perceived as close as possible to sounds emanating from the physical sources. This would also require a superposition of virtual sources with the physical sound sources, as well as ambience. Modified versions of the filtered-x normalized least mean square algorithm (FxNLMS) are proposed in the paper to converge faster to the optimum solution as compared to the conventional FxNLMS. Measurements are carried out with open structure type headphones to evaluate their performance. Subjective test was conducted using individualized binaural room impulse responses (BRIRs) to evaluate the perceptual similarity between real and virtual sounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据