4.5 Article

Laboratory study of heterogeneous ice nucleation in deposition mode of montmorillonite mineral dust particles aged with ammonia, sulfur dioxide, and ozone at polluted atmospheric concentrations

期刊

AIR QUALITY ATMOSPHERE AND HEALTH
卷 1, 期 3, 页码 135-142

出版社

SPRINGER
DOI: 10.1007/s11869-008-0019-6

关键词

Deposition freezing; Ice nucleation; Montmorillonite; Sulfur dioxide; Ozone; Ammonia

资金

  1. Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)
  2. National Science and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

Heterogeneous ice nucleation in deposition mode of montmorillonite mineral dust aerosol particles exposed to atmospheric trace gases (ammonia, sulfur dioxide, and ozone) was studied at temperatures warmer than -40 degrees C with a continuous flow diffusion chamber. Pure and typical polluted atmospheric concentrations of ammonia, sulfur dioxide, and ozone gases were used to age montmorillonite mineral dust aerosol particles at room temperature and atmospheric pressure in a stainless steel chamber. Ammonia-, sulfur dioxide-, and ozone-exposed montmorillonite mineral dust aerosols act as ice nuclei in heterogeneous deposition freezing at warmer temperatures than required for homogeneous freezing. The ice nucleation efficiency of montmorillonite mineral dust aerosols increased about two times due to exposure to ammonia at a typical atmospheric concentration of about 100 ppt. This is the first experimental evidence for the enhancement of the ice nucleation efficiency of montmorillonite mineral dust aerosols by ammonia gas at typical atmospheric concentrations. Montmorillonite exposure to either pure (100%) or 45 ppm sulfur dioxide or to ozone at 200 ppb shows no clear evidence for changing the ice nucleation efficiency of montmorillonite mineral dust particles. Thus, we conclude that enhancements atmospheric trace gases (e. g., sulfur dioxide and ozone) due to anthropogenic activities have no significant impact on the heterogeneous ice nucleation of montmorillonite mineral dust particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据