4.4 Article

Structural enhancement of ZnO on SiO2 for photonic applications

期刊

AIP ADVANCES
卷 3, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4815974

关键词

-

资金

  1. BMBF via the NanoFutur grant [03X5509]

向作者/读者索取更多资源

Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO2). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO2 capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据