4.4 Article

Manipulating absorption and diffusion of H atom on graphene by mechanical strain

期刊

AIP ADVANCES
卷 1, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3622614

关键词

-

资金

  1. NUS [R-144-000-237-133, R-144-000-255-112]
  2. NRF-CRP [NRF2008NRF-CRP002-024]

向作者/读者索取更多资源

Effects of the tensile strain on absorption and diffusion of hydrogen atoms on graphene have been studied by first-principles calculations. Our calculations suggested that there exists a barrier of 0.22 eV for H atom to diffuse from free space to graphene. The barrier originates from the transition of the hybridization of the H-binded carbon atom in graphene from sp(2) to sp(3), and is robust against the tensile strain. It was also found that, first, the in-plane diffusion of H atoms on graphene is unlikely to happen at low temperature due to the high barrier without or with strain, and second, the tensile strain along the armchair direction greatly decreases the out-plane diffusion barrier of H atoms, making it possible at low temperature. In particular, when the armchair strain is moderate (<10%), we found that the out-plane diffusion of H atoms likely to happen by diffusing through C-C bonds, and for relatively large armchair strain around 15%, the out-plane diffusion will happen though the center of the benzene ring. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3622614]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据