4.6 Review

Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid

期刊

ENVIRONMENTAL SCIENCE-NANO
卷 2, 期 5, 页码 429-439

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4en00215f

关键词

-

资金

  1. National Science Foundation [CBET1424502]

向作者/读者索取更多资源

Current practices of initial nanoparticle characterization with respect to particle size, shape, surface and bulk composition prior to experiments to test, for example, cellular interaction or toxicity, will not accurately describe nanomaterials in a given medium. The use of initial characterization data in subsequent analyses inherently assumes that nanoparticles are static entities. However, nanoparticle characterization, which is crucial in all studies related to their applications and implications, should also include information about the dynamics of the interfacial region between the nanomaterial surface and the surrounding medium. The objective of this tutorial review is to highlight the importance of in situ characterization of metal oxide nanoparticle surfaces in complex media. In particular, several examples of TiO2 (5 nm) and alpha-Fe2O3 (2 nm) nanoparticles, in different environmental and biological media, are presented so as to show the importance of the milieu to oxide surface composition. The surface composition is shown to be controlled by the adsorption of biological components (proteins and amino acids), inorganic oxyanions (phosphates and carbonates) and environmental ligands (humic acid). The extent of surface adsorption depends on the solution phase composition and the affinity of different components to adsorb to the nanoparticle surface. The examples presented here show that there is a range of possible surface interactions, adsorption energetics and adsorption modes including reversible adsorption, irreversible adsorption and co-adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据