4.7 Article

N-trimethylchitosan/Alginate Layer-by-Layer Self Assembly Coatings Act as Fungal Repellents to Prevent Biofilm Formation on Healthcare Materials

期刊

ADVANCED HEALTHCARE MATERIALS
卷 4, 期 3, 页码 -

出版社

WILEY-BLACKWELL
DOI: 10.1002/adhm.201400428

关键词

-

资金

  1. NIDCR
  2. NIH [R01 DE021084]
  3. VA Merit Review [1I01BX001103]

向作者/读者索取更多资源

Fungal biofilm formation on healthcare materials is a significant clinical concern, often leading to medical-device-related infections, which are difficult to treat. A novel fungal repellent strategy is developed to control fungal biofilm formation. Methylacrylic acid (MAA) is grated onto poly methyl methacrylate (PMMA)-based biomaterials via plasma-initiated grafting polymerization. A cationic polymer, trimethylchitosan (TMC), is synthesized by reacting chitosan with methyl iodide. Sodium alginate (SA) is used as an anionic polymer. TMC/SA multilayers are coated onto the MAA-grafted PMMA via layer-by-layer self-assembly. The TMC/SA multilayer coatings significantly reduce fungal initial adhesion, and effectively prevent fungal biofilm formation. It is concluded that the anti-adhesive property of the surface is due to its hydrophilicity, and that the biofilm-inhibiting action is attributed to the antifungal activity of TMC as well as the chelating function of TMC and SA, which may have acted as fungal repellents. Phosphate buffered saline (PBS)-immersion tests show that the biofilm-modulating effect of the multilayer coatings is stable for more than 4 weeks. Furthermore, the presence of TMC/SA multilayer coatings improves the biocompatibility of the original PMMA, offering a simple, yet effective, strategy for controlling fungal biofilm formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据