4.7 Article

Conductive PANi/PEGDA Macroporous Hydrogels For Nerve Regeneration

期刊

ADVANCED HEALTHCARE MATERIALS
卷 2, 期 1, 页码 218-227

出版社

WILEY
DOI: 10.1002/adhm.201200152

关键词

-

向作者/读者索取更多资源

Only recently polymers with intrinsic conductive properties have been studied in relation to their incorporation into bioactive scaffolds for use in tissue engineering. The reason for this interest is that such scaffolds could electrically stimulate cells and thus regulate specific cellular activities, and by this means influence the process of regeneration of those tissues that respond to electrical impulses. In our work, macroporous hydrogels are developed with controlled pore morphology and conductive properties to enable sufficient cell signaling to supply events inherent to nerve regeneration. A hybrid material has been prepared by in situ precipitation of polyaniline (PANi) in polyethyleneglycol diacrylate (PEGDA) solution, followed by crosslinking via UV irradiation. A porous architecture, characterized by macropores from 136 mu m to 158 mu m in size, has been achieved by sodium chloride particle leaching. In this work, we demonstrate that PANi synthesis and hydrogel crosslinking combine to enable the design of materials with suitable conductive behaviour. The presence of PANi evidently increased the electrical conductivity of the hybrid material from (1.1 +/- 0.5) x 10(-3) mS/cm with a PANi content of 3wt%. The hydrophilic nature of PANi also enhanced water retention/proton conductivity by more than one order of magnitude. In vitro studies confirmed that 3 wt% PANi also improve the biological response of PC12 and hMSC cells. Hybrid PANi/PEGDA macroporous hydrogels supplement new functionalities in terms of morphological and conductive properties, both of which are essential prerequisites to drive nerve cells in regenerative processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据