4.7 Article

Electrochemical Analysis of Shewanella oneidensis Engineered To Bind Gold Electrodes

期刊

ACS SYNTHETIC BIOLOGY
卷 2, 期 2, 页码 93-101

出版社

AMER CHEMICAL SOC
DOI: 10.1021/sb300042w

关键词

gold-binding peptide; biocatalysis; metal reduction

资金

  1. Biocatalysis Initiative and the BioTechnology Institute at the University of Minnesota

向作者/读者索取更多资源

Growth in three-electrode electrochemical cells allows quantitative analysis of mechanisms involved in electron flow from dissimilatory metal reducing bacteria to insoluble electron acceptors. In these systems, gold electrodes are a desirable surface to study the electrophysiology of extracellular respiration, yet previous research has shown that certain Shewanella species are unable to form productive biofilms on gold electrodes. To engineer attachment of Shewanella oneidensis to gold, five repeating units of a synthetic gold-binding peptide (5rGBP) were integrated within an Escherichia colt outer membrane protein, LamB, and displayed on the outer surface of S. oneidensis. Expression of LamB-5rGBP increased cellular attachment of S. oneidensis to unpoised gold surfaces but was also associated with the loss of certain outer membrane proteins required for extracellular respiration. Loss of these outer membrane proteins during expression of LamB-5rGBP decreased the rate at which S. oneidensis was able to reduce insoluble iron, riboflavin, and electrodes. Moreover, poising the gold electrode resulted in repulsion of the engineered cells. This study provides a strategy to specifically immobilize bacteria to electrodes while also outlining challenges involved in merging synthetic biology approaches with native cellular pathways and cell surface charge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据