4.7 Article

Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering

期刊

ACS MACRO LETTERS
卷 1, 期 1, 页码 33-36

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mz200015c

关键词

-

资金

  1. Joint Center for Artificial Photosynthesis (JCAP)
  2. Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. Office of Fuel Cell Technologies

向作者/读者索取更多资源

The ability of the Nafion membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This work demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake. In situ small-angle X-ray scattering (SAXS) experiments captured the rapid swelling of the membrane in liquid water with a nanostructure rearrangement on the order of seconds. For membranes in contact with water vapor, morphological changes are four orders-of-magnitude slower than in liquid water, suggesting that interfacial resistance limits the penetration of water into the membrane. Also, upon water absorption from liquid water, a structural rearrangement from a distribution of spherical and cylindrical domains to exclusively cylindrical like domains is suggested. These differences in water uptake kinetics and morphology provide a new perspective into Schroeder's paradox, which dictates a different water content for vapor- and liquid-equilibrated ionomers at unit activity. The findings of this work provide critical insights into the fast kinetics of water absorption of the Nafion membrane, which can aid in the design of energy conversion devices that operate under frequent changes in environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据