4.6 Article

Coarse-grained methods for polymeric materials: enthalpy- and entropy-driven models

出版社

WILEY
DOI: 10.1002/wcms.1149

关键词

-

向作者/读者索取更多资源

Polymers are multiscale systems by construction. They are formed by several monomeric units connected by covalent bonds whose chemical nature defines the rigidity of the chain. The interconnection between the monomeric units determines the interdependence of the motion of the different chain segments and the intrinsic multiscale nature of polymeric materials. This characteristic is reflected on the different modeling techniques that can be used to simulate polymeric materials. Because of the large conformational space that needs to be sampled when simulating polymers, coarse-grained (CG) models are commonly used and depending on which part of the system free energy (enthalpy, entropy, or both) is relevant for the properties of interest, the appropriate modeling techniques should be used. Each model is characterized by advantages and limitations that can have a great impact on the quality of the results obtained. In this overview, we address some of the more common CG techniques presented in the literature for the modeling of polymeric materials at different length scales. (C) 2013 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2014, 4:62-70. doi: 10.1002/wcms.1149 The authors have declared no conflicts of interest in relation to this article. For further resources related to this article, please visit the WIREs website.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据