4.6 Article

Transition metal catalysis by density functional theory and density functional theory/molecular mechanics

出版社

WILEY
DOI: 10.1002/wcms.1092

关键词

-

资金

  1. ICIQ foundation
  2. Spanish MICINN [CTQ2011-27033, CSD2006-0003]
  3. Catalan DIUE [2009SGR0259]

向作者/读者索取更多资源

Density functional theory (DFT) and density functional theory/molecular mechanics (DFT/MM) methods are useful tools in modern homogeneous catalysis. Calculation, with its ability to characterize otherwise hardly accessible intermediates and transition states, is a key complement to experiment for the full characterization of the often intricate reaction mechanisms involved in transition metal catalysis. DFT and DFT/MM techniques have been applied to the characterization of full catalytic cycles, as those in cross-coupling; to the systematic analysis of single reaction steps common to several catalytic cycles, such as C?H activation; to the elucidation of processes involving different spin states, such as the rebound mechanism for C?H activation; to the identification of transient intermediates with key mechanistic roles, such as those in oxygen-evolving complexes; to the analysis of the catalytic keys to polymerization control, as in olefin polymerization; and to reproduction and rationalization of experimentally reported enantioselectvities, as in the case of olefin dihydroxylation. The currently available techniques provide sufficient accuracy to offer chemical insight into the systems involved in experiment, as proved by the growing body of successful applications in the field. (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据