4.6 Review

Algorithm improvements for molecular dynamics simulations

出版社

WILEY
DOI: 10.1002/wcms.3

关键词

-

资金

  1. Division Of Chemistry [0910858] Funding Source: National Science Foundation

向作者/读者索取更多资源

High-performance implementations of molecular dynamics (MD) simulations play an important role in the study of macromolecules. Recent advances in both hardware and simulation software have extended the accessible time scales significantly, but the more complex algorithms used in many codes today occasionally make it difficult to understand the program flow and data structures without at least some knowledge about the underlying ideas used to improve performance. In this review, we discuss some of the currently most important areas of algorithm improvement to accelerate MD, including floating-point maths, techniques to accelerate nonbonded interactions, and methods to allow multiple or extended time steps. There is also a strong trend of increased parallelization on different levels, including both distributed memory domain decomposition, stream processing algorithms running, e. g., on graphics processing units hardware, and last but not least techniques to decouple simulations to enable massive parallelism on next-generation supercomputers or distributed computing. We describe some of the impacts these algorithms are having in current performance, and also how we believe they can be combined in the future. (C) 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 93-108 DOI: 10.1002/wcms.3

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据