4.7 Review

Repair of injured spinal cord using biomaterial scaffolds and stem cells

期刊

STEM CELL RESEARCH & THERAPY
卷 5, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/scrt480

关键词

-

资金

  1. Wichita State University
  2. National Center for Research Resources [P20 RR016475]
  3. National Institute of General Medical Sciences, National Institutes of Health [P20 GM103418]

向作者/读者索取更多资源

The loss of neurons and degeneration of axons after spinal cord injury result in the loss of sensory and motor functions. A bridging biomaterial construct that allows the axons to grow through has been investigated for the repair of injured spinal cord. Due to the hostility of the microenvironment in the lesion, multiple conditions need to be fulfilled to achieve improved functional recovery. A scaffold has been applied to bridge the gap of the lesion as contact guidance for axonal growth and to act as a vehicle to deliver stem cells in order to modify the microenvironment. Stem cells may improve functional recovery of the injured spinal cord by providing trophic support or directly replacing neurons and their support cells. Neural stem cells and mesenchymal stem cells have been seeded into biomaterial scaffolds and investigated for spinal cord regeneration. Both natural and synthetic biomaterials have increased stem cell survival in vivo by providing the cells with a controlled microenvironment in which cell growth and differentiation are facilitated. This optimal multi-disciplinary approach of combining biomaterials, stem cells, and biomolecules offers a promising treatment for the injured spinal cord.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据