4.7 Article

PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-33521-9

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. National Science Foundation Graduate Research Fellowship [DGE 1106400]
  3. Office of Naval Research [N000141310551]
  4. Knut and Alice Wallenberg Foundation
  5. Swedish Foundation for Strategic Research
  6. Swedish MSCA Seal of Excellence program
  7. Marie Sklodowska Curie Individual Fellowship (MSCA-IF-EF-ST) [702641]

向作者/读者索取更多资源

Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxy thiophene): poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 mu m thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据