4.7 Article

Estimating regional flood discharge during Palaeocene-Eocene global warming

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-31076-3

关键词

-

资金

  1. Swiss National Science Foundation grant Earth Surface Signaling Systems [200021-146822]
  2. Netherlands Earth System Sciences Centre (NESSC)
  3. Swiss National Science Foundation (SNF) [200021_146822] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Among the most urgent challenges in future climate change scenarios is accurately predicting the magnitude to which precipitation extremes will intensify. Analogous changes have been reported for an episode of millennial-scale 5 degrees C warming, termed the Palaeocene-Eocene Thermal Maximum (PETM; 56 Ma), providing independent constraints on hydrological response to global warming. However, quantifying hydrologic extremes during geologic global warming analogs has proven difficult. Here we show that water discharge increased by at least 1.35 and potentially up to 14 times during the early phase of the PETM in northern Spain. We base these estimates on analyses of channel dimensions, sediment grain size, and palaeochannel gradients across the early PETM, which is regionally marked by an abrupt transition from overbank palaeosol deposits to conglomeratic fluvial sequences. We infer that extreme floods and channel mobility quickly denuded surrounding soil-mantled landscapes, plausibly enhanced by regional vegetation decline, and exported enormous quantities of terrigenous material towards the ocean. These results support hypotheses that extreme rainfall events and associated risks of flooding increase with global warming at similar, but potentially at much higher, magnitudes than currently predicted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据