4.7 Article

Ultracompact Graphene-Assisted Tunable Waveguide Couplers with High Directivity and Mode Selectivity

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-31555-7

关键词

-

资金

  1. Natural Science Foundation of Beijing Municipality [501100004826]
  2. Beijing Young Talents Support Project [2017000020124G044]

向作者/读者索取更多资源

Graphene distinguishes itself as a promising candidate for realizing tunable integrated photonic devices with high flexibility. We propose a set of ultracompact tunable on-chip waveguide couplers with mode-selectivity and polarization sensitivity around the telecom wavelength of 1.55 mu m, under the configuration of graphene-laminated silicon waveguides patterned with gold nanoantennas. Versatile couplings can be achieved in a widely tunable fashion within a deep-subwavelength area (210 x 210 nm(2)), by marrying the advantages of tight field confinement in plasmonic antennas and the largely tunable carrier density of graphene. Incident light signals can be selectively coupled into different fundamental modes with good mode quality and high directionality exceeding 25 dB. Design scenarios for asymmetric couplings are presented, where the operation wavelength can be tuned across a 107-nm range around 1.55 mm by altering the chemical potential of graphene from 0 to 1.8 eV. Furthermore, the proposed schemes can be leveraged as mode-sensitive on-chip directional waveguide signal detectors with an extinction ratio over 10 dB. Our results provide a new paradigm upon graphene-assisted tunable integrated photonic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据