4.7 Article

Discovery of topological nodal-line fermionic phase in a magnetic material GdSbTe

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-31296-7

关键词

-

资金

  1. Air Force Office of Scientific Research [FA9550-17-1-0415]
  2. UCF
  3. Swedish Research Council (VR)
  4. Rontgen-Angstrom Cluster
  5. Swedish National Infrastructure for Computing (SNIC)
  6. NSF IR/D program

向作者/读者索取更多资源

Topological Dirac semimetals with accidental band touching between conduction and valence bands protected by time reversal and inversion symmetry are at the frontier of modern condensed matter research. A majority of discovered topological semimetals are nonmagnetic and conserve time reversal symmetry. Here we report the experimental discovery of an antiferromagnetic topological nodal-line semimetallic state in GdSbTe using angle-resolved photoemission spectroscopy. Our systematic study reveals the detailed electronic structure of the paramagnetic state of antiferromagnetic GdSbTe. We observe the presence of multiple Fermi surface pockets including a diamond-shape, and small circular pockets around the zone center and high symmetry X points of the Brillouin zone (BZ), respectively. Furthermore, we observe the presence of a Dirac-like state at the X point of the BZ and the effect of magnetism along the nodal-line direction. Interestingly, our experimental data show a robust Dirac-like state both below and above the magnetic transition temperature (T-N = 13 K). Having a relatively high transition temperature, GdSbTe provides an archetypical platform to study the interaction between magnetism and topological states of matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据