4.7 Article

Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-31365-x

关键词

-

资金

  1. ONR-MURI program
  2. National Science Foundation
  3. Intel Corporation
  4. DoD Vannevar Bush Fellowship

向作者/读者索取更多资源

The rapid growth of brain-inspired computing coupled with the inefficiencies in the CMOS implementations of neuromrphic systems has led to intense exploration of efficient hardware implementations of the functional units of the brain, namely, neurons and synapses. However, efforts have largely been invested in implementations in the electrical domain with potential limitations of switching speed, packing density of large integrated systems and interconnect losses. As an alternative, neuromorphic engineering in the photonic domain has recently gained attention. In this work, we propose a purely photonic operation of an Integrate-and-Fire Spiking neuron, based on the phase change dynamics of Ge2Sb2Te5 (GST) embedded on top of a microring resonator, which alleviates the energy constraints of PCMs in electrical domain. We also show that such a neuron can be potentially integrated with on-chip synapses into an all-Photonic Spiking Neural network inferencing framework which promises to be ultrafast and can potentially offer a large operating bandwidth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据