4.7 Article

Diagnostics of autoimmune neurodegeneration using fluorescent probing

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-30938-0

关键词

-

资金

  1. Russian Science Foundation [17-74-30019]
  2. Russian Foundation for Basic Research [IIP 17-04-01233 A]

向作者/读者索取更多资源

The discovery of antibody-mediated catalysis was a breakthrough that showed antibody function is not limited to specific binding interactions, and that immunoglobulins (Igs) may also chemically transform their target antigens. Recently, so-called natural catalytic antibodies have been intimately linked with several pathologies, where they either protect the organism or contribute to the development of autoimmune abnormalities. Previously, we showed that myelin-reactive autoantibodies from patients with multiple sclerosis (MS) and mice with experimental autoimmune encephalomyelitis (EAE) exhibit the ability to recognize and hydrolyse distinct epitopes within myelin basic protein (MBP). Further, the antibody-mediated cleavage of encephalitogenic MBP peptide 81-103, flanked by two fluorescent proteins, can serve as a novel biomarker for MS. Here, we report the next generation of this biomarker, based on the antibody-mediated degradation of a novel chemically synthesized FRET substrate, comprising the fluorophore Cy5 and the quencher QXL680, interconnected by the MBP peptide 81-99:Cy5-MBP81-99-QXL680. This substrate is degraded upon incubation with either purified antibodies from MS patients but not healthy donors or purified antibodies and splenocytes from EAE but not from non-immunized mice. Data presented herein suggest the elaboration of potential specific, rapid, and sensitive diagnostic criteria of active progressive MS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据