4.7 Article

High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-28703-4

关键词

-

资金

  1. Key Program of National Natural Science Foundation of China [61531003]
  2. National Natural Science Foundation [61427813]
  3. National Basic Research Program of China (973 Program) [2014CB340102]
  4. Fund of State Key Laboratory of Information Photonics and Optical Communications

向作者/读者索取更多资源

Error correction is a significant step in postprocessing of continuous-variable quantum key distribution system, which is used to make two distant legitimate parties share identical corrected keys. We propose an experiment demonstration of high speed error correction with multi-edge type low-density parity check (MET-LDPC) codes based on graphic processing unit (GPU). GPU supports to calculate the messages of MET-LDPC codes simultaneously and decode multiple codewords in parallel. We optimize the memory structure of parity check matrix and the belief propagation decoding algorithm to reduce computational complexity. Our results show that GPU-based decoding algorithm greatly improves the error correction speed. For the three typical code rate, i.e., 0.1, 0.05 and 0.02, when the block length is 10(6) and the iteration number are 100, 150 and 200, the average error correction speed can be respectively achieved to 30.39 Mbits/s (over three times faster than previous demonstrations), 21.23 Mbits/s and 16.41 Mbits/s with 64 codewords decoding in parallel, which supports high-speed real-time continuous-variable quantum key distribution system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据