4.7 Article

Tuning electronic properties of transition-metal dichalcogenides via defect charge

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-31941-1

关键词

-

资金

  1. Centre for Doctoral Training on Theory and Simulation of Materials at Imperial College London - EPSRC [EP/L015579/1]
  2. Thomas Young Centre [TYC-101]

向作者/读者索取更多资源

Defect engineering is a promising route for controlling the electronic properties of monolayer transition-metal dichalcogenide (TMD) materials. Here, we demonstrate that the electronic structure of MoS2 depends sensitively on the defect charge, both its sign and magnitude. In particular, we study shallow bound states induced by charged defects using large-scale tight-binding simulations with screened defect potentials and observe qualitative changes in the orbital character of the lowest lying impurity states as function of the impurity charge. To gain further insights, we analyze the competition of impurity states originating from different valleys of the TMD band structure using effective mass theory and find that impurity state binding energies are controlled by the effective mass of the corresponding valley, but with significant deviations from hydrogenic behaviour due to unconventional screening of the defect potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据