4.7 Article

Accretionary prism collapse: a new hypothesis on the source of the 1771 giant tsunami in the Ryukyu Arc, SW Japan

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-31956-8

关键词

-

向作者/读者索取更多资源

The giant 1771 Yaeyama tsunami occurred in the southwestern part of the Ryukyu Arc, a region on an obliquely subducting plate boundary, which shows no direct evidence of inter-plate coupling. Studies of tsunami boulders and deposits suggest that the recurrence interval of comparably giant tsunamis is roughly 500 to 1000 years. Tsunami source models, which include either slip on a shallow plate boundary or active faulting plus a landslide on the overriding plate, are controversial because of inconsistencies in the geophysical and geological data. We discovered a seafloor depression that is approximately 30 km wide and 80 km long extending in the ESE-WNW direction. This depression is accompanied by a seaward bulge on the accretionary prism along the Ryukyu Trench, which is based on detailed bathymetric data and interpreted to be the result of accretionary prism collapse and seaward displacement by rotational slide. A simple tsunami simulation shows that the slide is a plausible source of the 1771 tsunami. We propose a collapse model, in which the accretionary prism remained over-steepened as strike-slip faulting removed the prism toe. Our model indicates that some oblique subduction zones are capable of generating giant tsunamis regardless of weak or strong coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据