4.7 Article

Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-31082-5

关键词

-

向作者/读者索取更多资源

Ubiquitous presence of cypermethrin as a contaminant in surface stream and soil necessitates to develop potential bioremediation methods to degrade and eliminate this pollutant from the environment. A cypermethrin utilizing bacterial strain (MIC, 450 ppm) was isolated from the soil of pesticide contaminated agriculture field and characterized by using polyphasic approach. On molecular basis bacterial isolate showed 98% homology with Bacillus subtilis strain 1D. Under optimized growth conditions, bacteria showed 95% degradation of cypermethrin after 15 days and the end products of cypermethrin biodegradation under aerobic conditions were cyclododecylamine, phenol, 3-(2,2-dichloroethenyl 2,2-dimethyl cyclopropane carboxylate, 1-decanol, chloroacetic acid, acetic acid, cyclopentan palmitoleic acid, and decanoic acid. Amplification of esterase (700 bp) and laccase (1200 bp) genes was confirmed by PCR which showed a possible role of these enzymes in biodegradation of cypermethrin. In the presence of cypermethrin Km value(s) of both the enzymes was low than the control. A nobel cypermethrin degradation pathway followed by B. subtilis was proposed on the basis of characterization of biodegraded products of cypermethrin using GC-MS. Cypermethrin biodegradation ability of Bacillus subtilis strain 1D without producing any toxic end product reveals the potential of this organism in cleaning of pesticide contaminated soil and water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据