4.7 Article

Enhanced hot electron lifetimes in quantum wells with inhibited phonon coupling

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-30894-9

关键词

-

资金

  1. National Science Foundation (NSF), through the ECCS program: ECCS [1610062]
  2. NSF [DMR-1229678]
  3. West Virginia Higher Education Commission [HEPC.dsr.12.29]
  4. Directorate For Engineering
  5. Div Of Electrical, Commun & Cyber Sys [1610062] Funding Source: National Science Foundation

向作者/读者索取更多资源

Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to further stabilize hot electrons in this system. This lengthens the time scale for thermalization to nanoseconds and results in a hot electron distribution with a temperature of 490 K for a quantum well structure under steady-state illumination at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据