4.7 Article

Heterolytic Splitting of Molecular Hydrogen by Frustrated and Classical Lewis Pairs: A Unified Reactivity Concept

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-16244-1

关键词

-

资金

  1. Research Foundation - Flanders (FWO) [V411016N, 1279414N, 1227014N]

向作者/读者索取更多资源

Using a set of state-of-the-art quantum chemical techniques we scrutinized the characteristically different reactivity of frustrated and classical Lewis pairs towards molecular hydrogen. The mechanisms and reaction profiles computed for the H-2 splitting reaction of various Lewis pairs are in good agreement with the experimentally observed feasibility of H-2 activation. More importantly, the analysis of activation parameters unambiguously revealed the existence of two reaction pathways through a low-energy and a high-energy transition state. An exhaustive scrutiny of these transition states, including their stability, geometry and electronic structure, reflects that the electronic rearrangement in low-energy transition states is fundamentally different from that of high-energy transition states. Our findings reveal that the widespread consensus mechanism of H-2 splitting characterizes activation processes corresponding to high-energy transition states and, accordingly, is not operative for H-2-activating systems. One of the criteria of H-2-activation, actually, is the availability of a low-energy transition state that represents a different H-2 splitting mechanism, in which the electrostatic field generated in the cavity of Lewis pair plays a critical role: to induce a strong polarization of H-2 that facilities an efficient end-on acid-H-2 interaction and to stabilize the charge separated H+-H- moiety in the transition state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据