4.7 Article

Effective mechanical properties of multilayer nano-heterostructures

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-017-15664-3

关键词

-

资金

  1. Swansea University through the award of Zienkiewicz Scholarship
  2. 'Engineering Nonlinearity' program grant - EPSRC [EP/K003836/1]
  3. National Science Foundation [NSF-CMMI 1537170]
  4. Extreme Science and Engineering Discovery Environment (XSEDE) [TG-DMR140008]

向作者/读者索取更多资源

Two-dimensional and quasi-two-dimensional materials are important nanostructures because of their exciting electronic, optical, thermal, chemical and mechanical properties. However, a single-layer nanomaterial may not possess a particular property adequately, or multiple desired properties simultaneously. Recently a new trend has emerged to develop nano-heterostructures by assembling multiple monolayers of different nanostructures to achieve various tunable desired properties simultaneously. For example, transition metal dichalcogenides such as MoS2 show promising electronic and piezoelectric properties, but their low mechanical strength is a constraint for practical applications. This barrier can be mitigated by considering graphene-MoS2 heterostructure, as graphene possesses strong mechanical properties. We have developed efficient closed-form expressions for the equivalent elastic properties of such multi-layer hexagonal nano-hetrostructures. Based on these physics-based analytical formulae, mechanical properties are investigated for different heterostructures such as graphene-MoS2, graphene-hBN, graphene-stanene and stanene-MoS2. The proposed formulae will enable efficient characterization of mechanical properties in developing a wide range of application-specific nano-heterostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据