4.7 Article

Fabrication of a conjugated microporous polymer membrane and its application for membrane catalysis

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-13827-w

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2015R1A2A2A01006585]
  2. National Research Foundation of Korea [2015R1A2A2A01006585] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

A flexible and free standing conjugated microporous polymer (CMP) membrane was prepared using a polyvinylpyrrolidone (PVP) electrospun membrane as a template. The PVP nanofibers of the template membrane were coated with a thin layer of the CMP through the in situ Sonogashira-Hagihara coupling reaction of 1,3,5-triethynylbenzene and 1,4-diiodobenzene. The PVP nanofibers were removed by the solvent extraction to produce the CMP membrane, which retained the entangled fibrous structure of the template membrane. Each fiber showed a hollow tubular structure having a CMP wall with a thickness of tens of nanometers. The microporous polymer membrane exhibited a high BET surface area with hierarchical porosity and good permeability. As a catalytic CMP membrane, the Ag nanoparticle-immobilized microporous polymer membrane was fabricated using an electrospun PVP@Ag membrane as a template. After being coated with the CMP, the PVP nanofibers were removed by the solvent extraction, but the Ag nanoparticles were trapped in the microporous polymer shell. The catalytic CMP membrane was successfully used for the catalytic reduction reaction of 4-nitrophenol. The hollow tubular structure and hierarchical porosity of the membrane allowed for the reactants to easily penetrate into the CMP wall and to contact the Ag nanoparticles, resulting in the high catalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据