4.7 Article

Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-13243-0

关键词

-

资金

  1. Smoking Research Foundation (Japan)
  2. Takeda Science Foundation (Japan)
  3. [23122513]
  4. [23300133]
  5. Grants-in-Aid for Scientific Research [26430071, 17K07110] Funding Source: KAKEN

向作者/读者索取更多资源

Wave-like propagation of [Ca2+](i) increases is a remarkable intercellular communication characteristic in astrocyte networks, intercalating neural circuits and vasculature. Mechanically-induced [Ca2+](i) increases and their subsequent propagation to neighboring astrocytes in culture is a classical model of astrocyte calcium wave and is known to be mediated by gap junction and extracellular ATP, but the role of each pathway remains unclear. Pharmacologic analysis of time-dependent distribution of [Ca2+](i)revealed three distinct [Ca2+](i) increases, the largest being in stimulated cells independent of extracellular Ca2+ and inositol 1,4,5-trisphosphate-induced Ca2+ release. In addition, persistent [Ca2+](i) increases were found to propagate rapidly via gap junctions in the proximal region, and transient [Ca2+](i) increases were found to propagate slowly via extracellular ATP in the distal region. Simultaneous imaging of astrocyte [Ca2+](i) and extracellular ATP, the latter of which was measured by an ATP sniffing cell, revealed that ATP was released within the proximal region by volume-regulated anion channel in a [Ca2+](i) independent manner. This detailed analysis of a classical model is the first to address the different contributions of two major pathways of calcium waves, gap junctions and extracellular ATP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据