4.7 Article

Self-compensation in arsenic doping of CdTe

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-04719-0

关键词

-

资金

  1. U.S. Department of Energy under Washington State University [ZEA-4-42204-01]
  2. NREL
  3. U.S. Department of Energy [DE-AC36-08GO28308]
  4. Alliance for Sustainable Energy, LLC
  5. NSFC [U1530401]

向作者/读者索取更多资源

Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping. Two As-doped CdTe with varying acceptor density and two undoped CdTe were grown in Cd-rich and Te-rich environments. The defect structures were investigated by thermoelectric-effect spectroscopy (TEES), and first-principles calculations were used for identifying and assigning the experimentally observed defects. Measurements revealed activation of As is very low in both As-doped samples with very short lifetimes indicating strong compensation and the presence of significant carrier trapping defects. Defect studies suggest two acceptors and one donor level were introduced by As doping with activation energies at similar to 88 meV, similar to 293 meV and similar to 377 meV. In particular, the peak shown at similar to 162 K in the TEES spectra is very prominent in both As-doped samples, indicating a signature of AX-center donors. The AX-centers are believed to be responsible for most of the compensation because of their low formation energy and very prominent peak intensity in TEES spectra.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据