4.7 Article

The Transcription Factor DAF-16 is Essential for Increased Longevity in C. elegans Exposed to Bifidobacterium longum BB68

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-07974-3

关键词

-

资金

  1. National Natural Science Foundation of China [31401668]
  2. Beijing Municipal Commission of Education Co-constructed Program

向作者/读者索取更多资源

The longevity-promoting benefits of lactobacilli were hypothesized as early as 1907. Although the anti-aging effects of lactic acid bacteria (LAB) have been observed in nematodes, rodents and humans for over a century, the mechanisms underlying the effects of probiotics on aging have rarely been assessed. Using the Caenorhabditis elegans (C. elegans) model, various studies have elucidated the role of different signaling cascades, especially the DAF-16 cascade, on lifespan extension by LAB. In this study, the mechanisms through which Bifidobacterium longum strain BB68 affects the longevity of C. elegans were assessed. The lifespan of nematodes increased by 28% after worms were fed BB68, and this extension of lifespan was completely lost in backgrounds containing a mutated DAF-16 gene. High levels of DAF-16 (in the daf-16 (mu86); muIs61 strain) nuclear accumulation and high expression of the SOD-3 gene (a DAF-16-specific target gene) were observed as a result of BB68 treatment. Immunofluorescence microscopy revealed that TIR-1 and JNK-1 are involved in the phosphorylation and activation of DAF-16. Thus, BB68 increased the longevity of nematodes by activating the TIR-1 - JNK-1 - DAF-16 signaling pathway, and the cell wall component of BB68 contributed to longevity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据