4.7 Article

Microscale Liquid Transport in Polycrystalline Inverse Opals across Grain Boundaries

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-10791-3

关键词

-

资金

  1. Water-Energy Nexus
  2. School of Engineering at the University of California at Irvine (UC Irvine)
  3. UC Irvine Mechanical and Aerospace Engineering Department Graduate Fellowship

向作者/读者索取更多资源

Delivering liquid through the void spaces in porous metals is a daunting challenge for a variety of emerging interface technologies ranging from battery electrodes to evaporation surfaces. Hydraulic transport characteristics of well-ordered porous media are governed by the pore distribution, porosity, and morphology. Much like energy transport in polycrystalline solids, hydraulic transport in semi-ordered porous media is predominantly limited by defects and grain boundaries. Here, we report the wicking performances for porous copper inverse opals having pore diameters from 300 to 1000 nm by measuring the capillary-driven liquid rise. The capillary performance parameter within single crystal domain (K-ij/R-eff = 10(-3) to 10(-2) mu m) is an order of magnitude greater than the collective polycrystal (K-eff/R-eff = similar to 10(-5) to 10(-3) mu m) due to the hydraulic resistances (i.e. grain boundaries between individual grains). Inspired by the heterogeneity found in biological systems, we report that the capillary performance parameter of gradient porous copper (K-eff/R-eff = similar to 10(-3) mu m), comparable to that of single crystals, overcomes hydraulic resistances through providing additional hydraulic routes in three dimensions. The understanding of microscopic liquid transport physics through porous crystals and across grain boundaries will help to pave the way for the spatial design of next-generation heterogeneous porous media.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据