4.7 Article

Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-06652-8

关键词

-

资金

  1. Chanel R&T, Neuilly, France

向作者/读者索取更多资源

The stratum corneum of the epidermis constitutes the mammalian skin barrier to the environment. It is formed by cornification of keratinocytes, a process which involves the removal of nuclear DNA. Here, we investigated the mechanism of cornification-associated DNA degradation by generating mouse models deficient of candidate DNA-degrading enzymes and characterizing their epidermal phenotypes. In contrast to Dnase1l2(-/-) mice and keratinocyte-specific DNase2 knockout mice (Dnase2(Delta ep)), Dnase1l2(-/-) Dnase2(Delta ep) mice aberrantly retained nuclear DNA in the stratum corneum, a phenomenon commonly referred to as parakeratosis. The DNA within DNase1L2/DNase2-deficient corneocytes was partially degraded in a DNase1-independent manner. Isolation of corneocytes, i.e. the cornified cell components of the stratum corneum, and labelling of DNA demonstrated that corneocytes of Dnase1l2(-/-) Dnase2(Delta ep) mice contained DNA in a nucleus-shaped compartment that also contained nucleosomal histones but lacked the nuclear intermediate filament protein lamin A/C. Parakeratosis was not associated with altered corneocyte resistance to mechanical stress, changes in transepidermal water loss, or inflammatory infiltrates in Dnase1l2(-/-) Dnase2(Delta ep) mice. The results of this study suggest that cornification of epidermal keratinocytes depends on the cooperation of DNase1L2 and DNase2 and indicate that parakeratosis per se does not suffice to cause skin pathologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据