4.7 Article

Monitoring Pertussis Infections Using Internet Search Queries

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-017-11195-z

关键词

-

资金

  1. Australian Research Council Future Fellowship [FT140101216]
  2. Australian Research Council [FT140101216] Funding Source: Australian Research Council

向作者/读者索取更多资源

This study aims to assess the utility of internet search query analysis in pertussis surveillance. This study uses an empirical time series model based on internet search metrics to detect the pertussis incidence in Australia. Our research demonstrates a clear seasonal pattern of both pertussis infections and Google Trends (GT) with specific search terms in time series seasonal decomposition analysis. The cross-correlation function showed significant correlations between GT and pertussis incidences in Australia and each state at the lag of 0 and 1 months, with the variation of correlations between 0.17 and 0.76 (p < 0.05). A multivariate seasonal autoregressive integrated moving average (SARIMA) model was developed to track pertussis epidemics pattern using GT data. Reflected values for this model were generally consistent with the observed values. The inclusion of GT metrics improved detective performance of the model (beta = 0.058, p < 0.001). The validation analysis indicated that the overall agreement was 81% (sensitivity: 77% and specificity: 83%). This study demonstrates the feasibility of using internet search metrics for the detection of pertussis epidemics in real-time, which can be considered as a pre-requisite for constructing early warning systems for pertussis surveillance using internet search metrics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据