4.7 Article

Nanoparticle Delivery of Fidgetin siRNA as a Microtubule-based Therapy to Augment Nerve Regeneration

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-10250-z

关键词

-

资金

  1. Craig H. Neilsen Foundation [259350]
  2. Telemedicine and Advanced Technology Research Center (TATRC) at the U.S. Army Medical Research and Materiel Command (USAMRMC) [W81XWH1210379]
  3. NIH [R01 NS28785, R01 GM109909, P01-HL110900]
  4. National Science Foundation Graduate Research Fellowship [1002809]

向作者/读者索取更多资源

Microtubule-stabilizing drugs have gained popularity for treating injured adult axons, the rationale being that increased stabilization of microtubules will prevent the axon from retracting and fortify it to grow through inhibitory molecules associated with nerve injury. We have posited that a better approach would be not to stabilize the microtubules, but to increase labile microtubule mass to levels more conducive to axonal growth. Recent work on fetal neurons suggests this can be accomplished using RNA interference to reduce the levels of fidgetin, a microtubule-severing protein. Methods to introduce RNA interference into adult neurons, in vitro or in vivo, have been problematic and not translatable to human patients. Here we show that a novel nanoparticle approach, previously shown to deliver siRNA into tissues and organs, enables siRNA to gain entry into adult rat dorsal root ganglion neurons in culture. Knockdown of fidgetin is partial with this approach, but sufficient to increase the labile microtubule mass of the axon, thereby increasing axonal growth. The increase in axonal growth occurs on both a favorable substrate and a growth-inhibitory molecule associated with scar formation in injured spinal cord. The nanoparticles are readily translatable to in vivo studies on animals and ultimately to clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据