4.7 Article

Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-12449-6

关键词

-

资金

  1. Ministry of Education, Culture, Sport, Science and Technology of Japan
  2. Yokohama Foundation for Advancement of Medical Science
  3. Brain Science Foundation
  4. Takeda Science Foundation
  5. Uehara Memorial Foundation
  6. NIH
  7. Falk Medical Research Trusts
  8. Grants-in-Aid for Scientific Research [17H03561] Funding Source: KAKEN

向作者/读者索取更多资源

Axonal regeneration in the adult mammalian central nervous system is limited in part by the non-permissive environment, including axonal growth inhibitors such as the Nogo-A protein. How the functions of these inhibitors can be blocked remains unclear. Here, we examined the role of LOTUS, an endogenous Nogo receptor antagonist, in promoting functional recovery and neural repair after spinal cord injury (SCI), as well as axonal regeneration after optic nerve crush. Wild-type untreated mice show incomplete but substantial intrinsic motor recovery after SCI. The genetic deletion of LOTUS delays and decreases the extent of motor recovery, suggesting that LOTUS is required for spontaneous neural repair. The neuronal overexpression of LOTUS in transgenic mice promotes motor recovery after SCI, and recombinant viral overexpression of LOTUS enhances retinal ganglion cell axonal regeneration after optic nerve crush. Thus, the level of LOTUS function titrates axonal regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据