4.7 Article

Characterisation of sterol biosynthesis and validation of 14α-demethylase as a drug target in Acanthamoeba

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-07495-z

关键词

-

向作者/读者索取更多资源

The soil amoebae Acanthamoeba causes Acanthamoeba keratitis, a severe sight-threatening infection of the eye and the almost universally fatal granulomatous amoebic encephalitis. More effective treatments are required. Sterol biosynthesis has been effectively targeted in numerous fungi using azole compounds that inhibit the cytochrome P450 enzyme sterol 14 alpha-demethylase. Herein, using Gas Chromatography Mass Spectrometry (GCMS), we demonstrate that the major sterol of Acanthamoeba castellanii is ergosterol and identify novel putative precursors and intermediate sterols in its production. Unlike previously reported, we find no evidence of 7-dehydrostigmasterol or any other phytosterol in Acanthamoeba. Of five azoles tested, we demonstrate that tioconazole and voriconazole have the greatest overall inhibition for all isolates of Acanthamoeba castellanii and Acanthamoeba polyphaga tested. While miconazole and sulconazole have intermediate activity econazole is least effective. Through GCMS, we demonstrate that voriconazole inhibits 14a-demethylase as treatment inhibits the production of ergosterol, but results in the accumulation of the lanosterol substrate. These data provide the most complete description of sterol metabolism in Acanthamoeba, provide a putative framework for their further study and validate 14a-demethylase as the target for azoles in Acanthamoeba.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据