4.7 Article

Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-04653-1

关键词

-

资金

  1. National Science Center, Poland [UMO-2014/15/D/NZ6/02665, UMO-2015/17/B/NZ6/03473]
  2. Foundation for Polish Science (FNP)
  3. RPOWP [UDA-RPPD.01.01.00-20-001/15-00]

向作者/读者索取更多资源

Fungal infections caused by Candida spp. represent an emerging problem during treatment of immunocompromised patients and those hospitalized with serious principal diseases. The ever-growing number of fungal strains exhibiting drug resistance necessitates the development of novel antimicrobial therapies including those based on membrane-permeabilizing agents and nanomaterials as drug carriers. In this study, the fungicidal activities of LL-37 peptide, ceragenin CSA-13 and its magnetic derivatives (MNP@LL-37, MNP@CSA-13) against laboratory and clinical strains of C. albicans, C. glabrata and C. tropicalis were evaluated. These experiments confirm the high anti-fungal activity of these well-characterized agents mediated by their interaction with the fungal membrane and demonstrate elevated activity following immobilization of LL-37 and CSA-13 on the surface of magnetic nanoparticles (MNPs). Furthermore, MNP-based nanosystems are resistant to inhibitory factors present in body fluids and effectively inhibit formation of fungal biofilm. Simultaneously, synthesized nanostructures maintain immunomodulatory properties, described previously for free LL-37 peptide and CSA-13 substrate and they do not interfere with the proliferation and viability of osteoblasts, confirming their high biocompatibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据