4.7 Article

A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-10453-4

关键词

-

资金

  1. National Natural Science Foundation of China [21506173]
  2. Natural Science Foundation of Chongqing [cstc2016jcyjA0210]
  3. China Postdoctoral Science Foundation [2015M582503]
  4. Chongqing Postdoctoral Science Foundation [Xm2015122]

向作者/读者索取更多资源

Enzyme-immobilized nanoparticles that are both catalysis effective and recyclable would have wide applications ranging from bioengineering and food industry to environmental fields; however, creating such materials has proven extremely challenging. Herein, we present a scalable methodology to create Candida rugosa lipase-immobilized magnetic nanoparticles (L-MNPs) by the combination of nonionic reverse micelle method and Fe(3O)4 nanoparticles. Our approach causes the naturally abundant and sustainable Candida rugose lipase to ordered-assemble into nanoparticles with high catalytic activity and durability. The resultant L-MNPs exhibit the integrated properties of high porosity, large surface area, fractal dimension, robust enzymatic activity, good durability, and high magnetic saturation (59 emu g(-1)), which can effectively catalyze pentyl valerate esterification and be easily separated by an external magnet in 60 second. The fabrication of such fascinating L-MNPs may provide new insights for developing functional enzyme-immobilized materials towards various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据