4.7 Article

Predicting hidden bulk phases from surface phases in bilayered Sr3Ru2O7

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-10780-6

关键词

-

资金

  1. U.S. Department of Energy under EPSCoR contract [DE-SC0012432]
  2. Louisiana Board of Regents
  3. National Science Foundation [DMR-1504226]
  4. New York State under NYSTAR program [C080117]

向作者/读者索取更多资源

The ability to predict hidden phases under extreme conditions is not only crucial to understanding and manipulating materials but it could also lead to insight into new phenomena and novel routes to synthesize new phases. This is especially true for Ruddlesden-Popper perovskite phases that possess interesting properties ranging from superconductivity and colossal magnetoresistance to photovoltaic and catalytic activities. In particular, the physical properties of the bilayer perovskite Sr3Ru2O7 at the surface are intimately tied to the rotation and tilt of the RuO6 octahedra. To take advantage of the extra degree of freedom associated with tilting we have performed first principles hybrid density functional simulations of uniaxial pressure applied along the c-axis of bulk Sr3Ru2O7 where we find that the octahedra become tilted, leading to two phase transitions. One is a structural transition at. 1.5 GPa, and the other is from a ferromagnetic (FM) metal to an antiferromagnetic (AFM) insulator at. 21 GPa whose AFM spin configuration is different from the AFM state near the FM ground state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据