4.7 Article

Epitaxially stabilized thin films of ε-Fe2O3 (001) grown on YSZ (100)

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-02742-9

关键词

-

资金

  1. Natural Sciences and Engineering Research Council (NSERC - Canada)
  2. Fonds de recherche du Quebec - Nature et technologies (FRQNT - Quebec)

向作者/读者索取更多资源

Epsilon ferrite (epsilon-Fe2O3) is a metastable phase of iron(III) oxide, intermediate between maghemite and hematite. It has recently attracted interest because of its magnetocrystalline anisotropy, which distinguishes it from the other polymorphs, and results in a gigantic coercive field and a natural ferromagnetic resonance frequency in the THz range. Moreover, it possesses a polar crystal structure, making it a potential ferroelectric, hence a potential multiferroic. Due to the need of size confinement to stabilize the metastable phase, epsilon-Fe2O3 has been synthesized mainly as nanoparticles. However, to favor integration in devices, and take advantage of its unique functional properties, synthesis as epitaxial thin films is desirable. In this paper, we report the growth of epsilon-Fe2O3 as epitaxial thin films on (100)-oriented yttrium-stabilized zirconia substrates. Structural characterization outlined the formation of multiple in-plane twins, with two different epitaxial relations to the substrate. Transmission electron microscopy showed how such twins develop in a pillar-like structure from the interface to the surface. Magnetic characterization confirmed the high magnetocrystalline anisotropy of our film and revealed the presence of a secondary phase which was identified as the well-known magnetite. Finally, angular analysis of the magnetic properties revealed how the presence of twins impacts their azimuthal dependence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据