4.7 Article

User adaptation in Myoelectric Man-Machine Interfaces

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-04255-x

关键词

-

资金

  1. European Union's Horizon research and innovation program (INPUT) [687795]

向作者/读者索取更多资源

State of the art clinical hand prostheses are controlled in a simple and limited way that allows the activation of one function at a time. More advanced laboratory approaches, based on machine learning, offer a significant increase in functionality, but their clinical impact is limited, mainly due to lack of reliability. In this study, we analyse two conceptually different machine learning approaches, focusing on their robustness and performance in a closed loop application. A classification (finite number of classes) and a regression (continuous mapping) based projection of EMG into external commands were applied while artificially introducing non-stationarities in the EMG signals. When tested on ten able-bodied individuals and one transradial amputee, the two methods were similarly influenced by non-stationarities when tested offline. However, in online tests, where the user could adapt his muscle activation patterns to the changed conditions, the regression-based approach was significantly less influenced by the changes in signal features than the classification approach. This observation demonstrates, on the one hand, the importance of online tests with users in the loop for assessing the performance of myocontrol approaches. On the other hand, it also demonstrates that regression allows for a better user correction of control commands than classification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据