4.7 Article

Liquid-liquid extraction intensification by micro-droplet rotation in a hydrocyclone

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-02732-x

关键词

-

资金

  1. National Science Foundation for Distinguished Young Scholars of China [51125032]
  2. National Natural Science Foundation of China [51308215]

向作者/读者索取更多资源

The previous literature reports that using a hydrocyclone as an extractor intensifies the mass transfer and largely reduces the consumption of extractant from 1800-2000 kg h(-1) to 30-90 kg h(-1). However, the intensification mechanism has not been clear. This paper presents experimental and numerical methods to study the multi-scale motion of particles in hydrocyclones. In addition to the usually considered translational behavior, the high-speed rotation of dispersed micro-spheres caused by the anisotropic swirling shear flow is determined. The rotation speeds of the tested micro-spheres are above 1000 rad s(-1), which are much larger than the instantaneous rotation speed in isotropic turbulence. Due to the conical structure of a hydrocyclone, the rotation speed maintains stability along the axial direction. Numerical results show that the particle Reynolds number of micro-droplets in a hydrocyclone is equal to that in conventional extractors, but the particles have high rotation speeds of up to 10,000 rad s(-1) and long mixing lengths of more than 1000 mm. Both the rotation of micro-droplets along the spiral trajectories and the intense eddy diffusion in a hydrocyclone contribute to the extraction intensification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据