4.7 Article

Single molecule and multiple bond characterization of catch bond associated cytoadhesion in malaria

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-04352-x

关键词

-

资金

  1. SMA Graduate Fellowship at SMART

向作者/读者索取更多资源

The adhesion of malaria infected red blood cells (iRBCs) to host endothelial receptors in the microvasculature, or cytoadhesion, is associated with severe disease pathology such as multiple organ failure and cerebral malaria. Malaria iRBCs have been shown to bind to several receptors, of which intercellular adhesion molecule 1 (ICAM-1) upregulation in brain microvasculature is the only one correlated to cerebral malaria. We utilize a biophysical approach to study the interactions between iRBCs and ICAM-1. At the single molecule level, force spectroscopy experiments reveal that ICAM-1 forms catch bond interactions with Plasmodium falciparum parasite iRBCs. Flow experiments are subsequently conducted to understand multiple bond behavior. Using a robust model that smoothly transitions between our single and multiple bond results, we conclusively demonstrate that the catch bond behavior persists even under flow conditions. The parameters extracted from these experimental results revealed that the rate of association of iRBC-ICAM-1 bonds are ten times lower than iRBC-CD36 (cluster of differentiation 36), a receptor that shows no upregulation in the brains of cerebral malaria patients. Yet, the dissociation rates are nearly the same for both iRBC-receptor interactions. Thus, our results suggest that ICAM-1 may not be the sole mediator responsible for cytoadhesion in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据