4.7 Article

Enteric glial cells counteract Clostridium difficile Toxin B through a NADPH oxidase/ROS/JNK/ caspase-3 axis, without involving mitochondrial pathways

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep45569

关键词

-

资金

  1. Department of Experimental Medicine, University of Perugia
  2. Fondazione Cassa di Risparmio di Perugia, Italy [2015-2015.0327.021]

向作者/读者索取更多资源

Enteric glial cells (EGCs) are components of the intestinal epithelial barrier essential for regulating the enteric nervous system. Clostridium difficile is the most common cause of antibiotic-associated colitis, toxin B (TcdB) being the major virulence factor, due to its ability to breach the intestinal epithelial barrier and to act on other cell types. Here we investigated TcdB effects on EGCs and the activated molecular mechanisms. Already at 2 hours, TcdB triggered ROS formation originating from NADPHoxidase, as demonstrated by their reduction in the presence of the NADPH-oxidase inhibitor ML171. Although EGCs mitochondria support almost completely the cellular ATP need, TcdB exerted weak effects on EGCs in terms of ATP and mitochondrial functionality, mitochondrial ROS production occurring as a late event. ROS activated the JNK signalling and overexpression of the proapoptotic Bim not followed by cytochrome c or AIF release to activate the downstream apoptotic cascade. EGCs underwent DNA fragmentation through activation of the ROS/JNK/caspase-3 axis, evidenced by the ability of ML171, N-acetylcysteine, and the JNK inhibitor SP600125 to inhibit caspase-3 or to contrast apoptosis. Therefore, TcdB aggressiveness towards EGCs is mainly restricted to the cytosolic compartment, which represents a peculiar feature, since TcdB primarily influences mitochondria in other cellular types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据