4.7 Article

The chemopreventive potential of lycopene against atrazine-induced cardiotoxicity: modulation of ionic homeostasis

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/srep24855

关键词

-

资金

  1. National Natural Science Foundation of China [31572586]
  2. Program for New Century Excellent Talents in University [NECT-1207-02]
  3. New Century Excellent Talents in Heilongjiang Provincial University [1252-NCET-009]
  4. Academic Backbone Project of Northeast Agricultural University [15XG16]

向作者/读者索取更多资源

People who drink water contaminated with atrazine (ATR) over many years can experience problems with their cardiovascular system. Lycopene (LYC) has been shown to exhibit cardiovascular disease preventive effects. However, chemopreventive potential of LYC against ATR-induced cardiotoxicity remains unclear. To determine the effects of ATR and/or LYC on heart, mice were treated with ATR (50 mg/kg or 200 mg/kg) and/or LYC (5 mg/kg) by intragastric administration for 21 days. Histopathological and biochemical analyses, including analysis of ion concentrations (Na+, K+, Ca2+ and Mg2+), ATPases (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities and the transcription of their subunits, were performed on heart. The results revealed that ATR led to decreased Creative Kinase (CK) activity and increased histological alterations. Furthermore, a significant change in Na+, K+ and Ca2+ content and the down-regulation of Na+-K+-ATPase and Ca2+-ATPase activities and the mRNA expression of their subunits were observed in ATR-exposed mice. Notably, supplementary LYC significantly protected the heart against ATR-induced damage. In conclusion, ATR induced cardiotoxicity by modulating cardiac ATPase activity and the transcription of its subunits, thereby triggering ionic disturbances. However, supplementary LYC significantly combated ATR-induced cardiotoxicity via the regulation of ATPase activity and subunit transcription. Thus, LYC exhibited a significant chemopreventive potential against ATR-induced cardiotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据