4.7 Article

Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/srep28190

关键词

-

资金

  1. Singapore Ministry of Education [MOE2010-T2-2-010, M4020020.040 ARC2/11, M4010360.040 RG29/10]
  2. NTU-NHG Innovation Collaboration Grant [M4061202.040]
  3. A*STAR Science and Engineering Research Council [M4070176.040]
  4. School of Electrical and Electronic Engineering at NTU
  5. Guangdong Natural Science Foundation [2014A030312008]
  6. Basic Research Foundation of Shenzhen [JCYJ20140418095735543]

向作者/读者索取更多资源

In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据