4.7 Article

Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep22062

关键词

-

资金

  1. EPSRC [EP/K021192/1, EP/K001329/1 (4CU)]
  2. FAPESP [13/22748-7, 14/14690-1]
  3. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [13/22748-7] Funding Source: FAPESP
  4. EPSRC [EP/K021192/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/K021192/1] Funding Source: researchfish

向作者/读者索取更多资源

Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs(-1)) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据