4.7 Article

Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

期刊

SCIENTIFIC REPORTS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep21177

关键词

-

资金

  1. MOST [2014CB239702]
  2. National Science Foundation of China [51302083, 51172071, 51272077]
  3. Fundamental Research Funds for the Central Universities and Shanghai Rising-Star Program

向作者/读者索取更多资源

Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g(-1), and good rate performance of 126.7 F g(-1) at 50 A g(-1). The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g(-1) and much improved rate performance (213.4 F g(-1) at 50 A g(-1)). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g(-1)), it still exhibits a very high specific capacitance of 245.8 F g-1, which is 65.2% retention of the initial capacitance (377.0 F g(-1) at 1 A g(-1)). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据